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A GENERALIZATION OF PARALLELISM IN
RIEMANNIAN GEOMETRY; THE C~ CASE

ALAN B, PORITZ

1. Introduction

Let g: N°—M™ be a smooth (C* or C*) immersion of riemannian mani-
folds. It is not assumed that the immersion is isometric. A smooth vector
bundle map G: T(N) —~ T(M) between the tangent bundles will be called a
tangent bundle isometry (T. B. 1.) along g provided that the fibers T(N)(n) =
N, are mapped isometrically by G into the fibers T(M)(g(n)) = M, ,,. More
generally, let £ be a euclidean vector bundle over N, F be a euclidean vector
bundle over M, and G: E — F; then G will be called a vector bundle. isometry
along g if G maps the fibers E(n) isometrically into the fibers F(g(n)). Let F be
the covariant derivative on M, and let G: T(N) — T{(M) be a T.B. 1. along g:
N? — M™. The normal bundle to G is the (im — p)-dimensional vector bundle
G+ (over N) whose fiber over ne N is the orthogonal complement, | G(N,).
to G(N,) in M, ,,,. The second fundamental form of G, Il;: G~ — Hom (T(N),
T(N)) is a vector bundle map defined in the following manner. If v ¢ | G(N,)
and x,yeN,, extend y to a vector field ¥ on N in some neighborhood of n
and put

. <]](;(7))X, y>n = — <Vdg(«r>G(Y)777>gw> .

Since J is a metric connection, the definition is independent of the choice of
Y. A T.B.1. G is parallel if tracesIl;. G+ — R is the zero function.
Three pieces of evidence in support of this terminology were given in [2].
First, suppose that y: (4, b) — M is a smoothly immersed curve, and let
djdi:(a,b) — T(a, b) be the standard unit vector field on (a,b). Then the
formula

d .
(;(E_(z)) = Y(1), te(a,b),

establishes a bijective correspondence between the set of T.B.1.s & along y and
the set of unit vector fields ¥ along y. Under this correspondence the parallel
T.B.1.s are paired with the parallel unit vector fields.
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Secondly, suppose g: N? —M™ is a smooth isometric immersion. Then G =
dg is a T.B.1. along g. G is parallel if and only if (¥, g) is a minimal variety
(see [3]). In the particular case of a curve: g =1y, N' = (a, b); dy is parallel if
and only if y is a geodesic.

Thirdly, the existence and umqueness theorems for geodesics and parallel
vector fields in terms of initial data can be mimiced (locally) in the C* case by
existence and uniqueness theorems for minimal varieties and parallel T.B.I.s
also in terms of appropriate initial data. The theorem for minimal varieties is
well known (see [2] and [3]). The theorem for parallel T.B.1.s proved in [2]
can be extended to the C* case.

The main objective of the paper is to give a proof of this theorem for the
C= case (see § 3 for statement of theorem). Lemma 1 is also of some interest
in itself. The paper is essentially self contained; it is completely independent
of [2].

2. Some lemmas

Lemma 1. Let y: (a,b) - M be a C* curve immersed in a riemannian
manifold (M, V) with 0¢(a, b),D: (a,b) — YM) a g-dimensional C* dist-
ribution along y, and Z: (a, b) — T(M) any C= vector field along y. Then
-each unit vector X,¢ | D(0) C M, ,, extends uniquely to a C* vector field X
along y such that, X(0) = X, and, for all te(a, b),|| X(0)|| = 1, X(®) | D(),
and

[Vi(t)X]J_span(D(t),X(t)) — [Z(t)]J_span(D(t),X(t)) .

(v)" means orthogonal projection of v into the subspace V.

Remark. If Z = 0 and g = 0, then X is the unique parallel vector field
along y which extends X,. If Z, and Z, are two C~ vector fields along y which
have the same projections perpendicular to D, then the corresponding solutions
X, and X, are equal. If (a,b) = (—e¢,¢), let J: (—e, &) — (—¢, &) be the map
t — —t. The solution along yoJ, which extends —JX, for the data DoJ and
Zo J, is —XolJ.

Proof of Lemmma 1. The conclusion of the lemma is easily seen to be
equivalent to the following: there is a unique C* vector field X along y such
that:

JAX(O) = X, and. for all te(a, b), X(¢) | D(®) and
[\[Vr_(t)X]J‘_smn:D(z)) — [Z(t)]_i_(span(D(L),X(t)) .

Choose a C* frame field W,, - - ., W, along 7 so that D(#) = span (W,(0), - - -,
W) and | D(1) = span(Wq‘l(t) W@ and W, (0) = X, Y, -- -,

Y, form a parallel frame field along y, there is a C~ curve 4 = (A4;)): (a, b)
— O(m, R) where A, (t) = (W (1), Y ()3, ., [here O(m, R) is the group of mx m
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orthogonal matrices, its Lie algebra o(rm, R) is the set of mxm skew sym-
metric matrices]. Let A* be the transpose curve of 4 and (A4*)’ its derivative,
then t — A()- (A*)'(¢) is easily seen to be a C~ curve in o(m, R). Let B: (a, b)
— o(m — g, R) be the C* curve where B(¢) is the lower right hand (m — @)
% (m — q) submatrix of A(f)-(A*)'(f). The vector field Z can be written Z =

Z7]n z;W, where z,, - - -, 2z, are C> functions on (a, b). A C> vector field X =
=1
ig}ﬂxiWi along 7 is a solution of # if and only if the curve X = (x,_,, - -+, x,):

(a, b) — R™~7 is a C™ solution on (a, b) of the first order non-linear system

o ¥_oz_<ZXOX py
X, X>

subject to the initial data
A_’(O) = (1905 : ";0) .

Here < , > means euclidean inner product and Z = (Zgo1s o> 2w (@, B) —
R™-4 while B is considered as acting on R™~?. Solutions of x% have con-
stant euclidean length since B(f) € o(m — g, R). In particular, the theory of
ordinary differential equations shows that there is a unique C* solution X =
(X441 -+ 5 X5) defined on (a, b) for the system =# satisfying the initial data.
This completes the proof of the lemma.

The theory of ordinary differential equations also says that if the data in
Lemma 1 depends differentiably on a parameter 7i which runs over a differenti-
able manifold N?-%, then the solutions also depend differentiably on 7. This
information is incorporated into Lemma 2 for later use.

Let e: N?=' — R be a positive C~ function. Then

V = {(# 0|t < (D)}

is an open submanifold of N?~!' x R. Let i: N*7' — V be the inclusion and
denote by 4 the C~ vector field defined on V by d(n) = 8(#, 1) = (0,3/5¢]);
9 is the tangent vector at time ¢ to the curve t — (A, 1).

Lemma 2. Suppose f: V — M is a C® map into a riemannian manifold
(M,F), D:V — %4M) is a C~ g-dimensional distribution along {,Z:V —
T(M) is a C™ vector field along f, and X,: NP=' — T(M) is a C* unit vector
field along foi orthogonal to Doi. Then there is a unique C> vector field along
f such that Xoi = X, and, forall ne V, | X(n)|| = 1, X(n) | D(n),

[Vdf(a(n))X]_Lspan(D(n),X(n)) — [Z(n)];'span(l)(n),.l'(n}) .

To prove existence in Lemma 2, it is only necessary to note that for ie N27,

the curves y;: (—e(#), () — M where 1;() = f(2,¢) and the data D; =
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Deo(A, ), Zz = Zo(fA, ), X,5 = X(#), fulfill the hypotheses of Lemma 1 and
depend differentiably on 7. Thus the solutions X (7ie N*~') fit together to
form a C*= solution X, X(n) = X(7i, 1) = X;(?), for Lemma 2. Uniqueness
follows from the fact that any solution Y for Lemma 2 restricts to solutions
Y5 = Yo(#A, ), ie N*7!, for Lemma 1 where uniqueness is known.

3. The theorem

If i: X — Y, and E is a vector bundle over Y, then i, : i*E —is the induced
map of the induced bundle. A distribution on N and the subbundle of T(N)
which it defines will be denoted by the same letter.

Theorem. Let g: N* — M™ be an (not necessarily isometric) immersion of
riemannian manifolds, H be a (p— 1)-dimensional distribution on N?, and
(N1 ) be a homeomorphically embedded integral manifold of H. Suppose
there is given as initial data

(1) GP': H > T(M), a vector bundle isometry along g,

(2) G?: *T(NP) — T(M) a vector bundle isometry along goi,
where it is assumed that G?~' and G? agree where they are both defined:

G? |y = G Yol : *H — T(M) .

Then, assuming that the data is all C*=, there is a neighborhood U of N*~! in
N? and a unique parallel T.B.1. G: T(U) — T(M) which extends the initial
data:

Glpy=Gr":H—-TWM) and Goi, = G?: *T(N?) - T(M) .

Proof of the theorem. 1f i e NP~!, then there is a special coordinate system
u=(u, ---u,): % — RP about 7 in N? which satisfies the following conditions.

a. The slices 4, = constant, - - -, u,_, = constant are integral manifolds of
the distribution | H.

b. % N N?"'is the slice u, = 0.

c. Forne%,{u,(n)|is the arc length measured along the integral manifold
of | H from u(u,(n), - - -, u,_(n),0) e N*~! to n.

d. The system is centered at 7i: u, (7)) = 0,i=1,.--,p.
e. The system has breadth é: p e u(%) if and only if r,(p) <8,i=1, - - -, p.
(r,, - - -, r, are the coordinates on R?).

Such a coordinate system may be obtained by choosing a unit vector field
which spans | H in a neighborhood of 7i in N*. By [1, p. 89], there is a coordi-
nate system v = (v,, - - -, v,): % — R? in which this vector field is /6% ,. This
system satisfies a. Since N?~! has the relative topology and the integral mani-
folds of | H cross N#°! transversally it may be assumed that ¥(N?~!' 1\ %)
appears as the graph of a C* function £ of the first p — I coordinates r,, - - -, 7,_,
in ¥(%) C R*. The new coordinate system u = (u,, - - -, u,): % — R? where
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u =v,i=1,.--.,p—1, and u, = v, — ke(wv,, ---,v,_,) satisfies a, b and
c¢. It is easily adjusted to satisfy d and e also.

Let {(#~, u*)|a € J} be alocally finite cover of N*~' by such special coordi-
nate systems, and the breadth of (%%, u*) be d,. For #ie N*?~! let #(#i) be the
maximal integral manifold of | H through 7i. If ne #(7), let L(%, n) be the
arc length measured along .#(7i) between 7 and n. Choose a positive C* func-
tion §: N?7'— R such that for each 7i e N*~*, {n e J(A) | L(#, n) < 26(A} N N?~?
= {A}. Finally, choose a positive C* function e: N*~! — R so that (7)) <
min (6(#), d,,, - - -,d,,) where %=, ..., %**(a; elJ) are the coordinate neigh-
borhoods which contain 7. Then

U= U {neA@|L#H, n) < M)}

menP1

is a neighborhood of N?~! in N?,

If 7ie NP1, choose (#*, u®) so that 7ie % and put V= = U N %=. Choose
C= orthonormal frames F,, - - -, F, on V= adapted to H |, [thus span (F(n),

-+, F,_(n)) = H(n)] and such that F,(n) = 9/duj3(n) lthus span F,(n) =
| H(n)) for all ne V=.

The initial data (1) determines both the vector field Z defined along g|,. by

p-1
Zn) = — Z Vdg(Fi(n))Gp-l(Fi) s neVe,
t=1
and the (p — 1)-dimensional distribution D defined along g|,. by

D(n) = GP~Y(H(n)) , nelV=.

Also, the initial data (2) determines the vector field X, defined along goi |, p-1,y«
by

Xy(n) = G*(F,(n)) , neNPIO Ve,

X, is orthogonal to Doi|
The formulas:

Np_lnva.

GUE(m) =GP (Fi(m) , i=1,-p—1,]
G(F,(n) = X(n) , J ’

place the set of parallel T.B.I.s G along gly., which extend the initial data
(1) and (2), in one-to-one correspondence with the set of C~ vector fields X
along g |y, which satisfy: X, = Xoi|ys-1ny« and, for all ne V=, [ X(n)) = 1,
X(n) 1 D(n),

[7 sy craugy ooy X200 = [Z()] senipim, xoo
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By Lemma 2, there is exactly one parallel T.B.I. G* along g|,. which ex-
tends the initial data.

In order to show that the locally defined G* patch together into a T.B.I. G
along g|, (where G(n) = G*(n) if n e V*) it is enough to show that on overlaps
VAN VE G yaqys = G |yaqps. Lemma 2 applies to V= V# (with the coordi-
nates u°) and yields a unique parallel T.B.I. G** along g |, ., s Which extends
the initial data there. Thus G*|;..ps = G = G*|,opy5. The resulting T.B.1L.
G is both parallel and a unique extension of the initial data since it locally
has these properties.
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